Design and synthesis of N-nonpolar nucleobase dipeptides: application of the Ugi reaction for the preparation of dipeptides having fluoroarylalkyl groups appended to the nitrogen atom

Biplab Kumar Das, Norio Shibata * and Yoshio Takeuchi

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-0194, Japan. E-mail: nozshiba@ms.toyama-mpu.ac.jp

Received (in Cambridge, UK) 27th September 2001, Accepted 27th November 2001 First published as an Advance Article on the web 21st December 2001

A single-step one-pot synthesis based on the Ugi four-component condensation of previously unknown dipeptides, **2**, **3**, **4** and **5**, having a fluoroaromatic group appended to the nitrogen atom, is described. The series of dipeptides produced here can be viewed as nonpolar nucleobase dipeptides since the difluorotoluene nucleoside **1** is a well known nonpolar analogue of natural thymidine. A mixture of N-protected amino acids **7**, fluorophenethylamines **6**, isocyanides **8**, and acetone or paraformaldehyde are stirred in methanol in the presence of 3 Å molecular sieves to furnish the *N*-fluoroarylethyl-Aib- or -Gly-containing dipeptides **2** or **3**, in moderate yields. The dipeptides **2d** and **3b**, having a cyclohex-1-enamide moiety, are deprotected readily with 3 M HCl in THF to afford the free dipeptides in high yields. The *N*-fluoroarylmethyl-Aib- or -Gly-containing β-alanyl dipeptides **4** or **5**, designed based on the structure of 2',5'-linked isoDNA, are also synthesized in a similar fashion to the preparation of **2**, in moderate to good yields as both protected and free dipeptides.

Introduction

Difluorotoluene nucleoside 1 has been developed as a nonpolar shape mimic for natural thymidine and it has been intensively used as a probe of the biological noncovalent interactions of oligonucleotides.¹ To everyone's great surprise, 1 serves as a template for DNA synthesis even though it lacks standard polar hydrogen bonding. These reports, along with our continuing interest in the study of fluorine-containing amino acids/ peptides,² have prompted us to synthesize *N*-difluorotolylethyl dipeptides 2 as N-nonpolar nucleobase peptides (Fig. 1).

The incorporation of a fluoroaryl moiety would be expected to confer significant changes in the secondary structure of the peptides due to the strong stacking effects of the fluoroaromatic rings,³ now functioning as nucleobase surrogates. Moreover, the

DOI: 10.1039/b108760f

introduction of a fluorine atom into amino acids and peptides⁴ should, in general, induce interesting new chemical and physiological properties.⁵ In an earlier communication,⁶ we briefly described a single-step synthesis of previously unknown Nnonpolar nucleobase dipeptides **2** that consists of Gly and Aib, substituted with fluoroarylalkyl pendent groups, using the Ugi four-component condensation [Aib: α -aminoisobutyric acid, 2-methylalanine, Ala(2-Me)]. We now delineate full details of our work, including an extension to the synthesis of a series of N-nonpolar nucleobase dipeptides **3**, **4** and **5** consisting of Gly–Gly, β Ala–Aib, and β Ala–Gly backbones, respectively (Scheme 1).

F-Ar: fluoroaryl; P= Z, Boc; R¹= Bu^t, 1-cyclohexenyl, CH₂COOEt

Scheme 1 Synthesis of N-nonpolar nucleobase dipeptides 2–5 by the Ugi four-component condensation.

Results and discussion

Design and synthesis of nonpolar nucleobase dipeptides 2 and 3 based on a Gly–Aib or Gly–Gly framework

In recent years the synthesis of heterocyclic substituted nonproteinogenic amino acids and peptides,⁷ especially those

J. Chem. Soc., Perkin Trans. 1, 2002, 197–206 197

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2002

Table 1 Synthesis of nonpolar nucleobase dipeptides 2 [Gly-Aib(N-fluoroarylethyl)]^a

Entry	Glycine 7 ^b	F-Ar-CH ₂ CH ₂ NH ₂ 6	CNR ¹ 8	Product 2	Yield (%) ^c
1	7a	<i>p</i> -Fluorophenethylamine 6a	CNBu ^t 8a	2a	42
2	7a	2,4-Difluorophenethylamine 6b	CNBu ^t 8a	2b	51
3	7a	2,4-Difluorophenethylamine 6b	CNCH ₂ COOEt 8b	2c	42
4	7b	2,4-Difluorophenethylamine 6b	CN-cyclohex-1-nyl 8c	2d	45
5	7a	ar-Pentafluorophenethylamine 6c	CNBu ^t 8a	2e	45
6	7a	ar-Pentafluorophenethylamine 6c	CNCH ₂ COOEt 8b	2f	51
7	7a	2,4-Difluoro-5-methylphenethylamine 6d	CNBu ¹ 8a	2g	43

^{*a*} The Ugi reaction was performed using glycines 7 (ProtNHCH₂COOH), amines 6 (F–Ar–CH₂CH₂NH₂), isocyanides 8 (CNR¹) and acetone in MeOH to give dipeptides 2 (see Scheme 1). ^{*b*} 7a: ZNHCH₂COOH, 7b: BocNHCH₂COOH. ^{*c*} Yields were based on the amines 6 employed.

amino acids with nucleobases on the side chains,⁸ has received much attention. This synthetic activity stems from the biological activity of such analogues, their use as probes to study amino acid–nucleobase interactions, and their utility as peptide (or polyamide) nucleic acids (PNAs),⁹ peptoid nucleic acids,¹⁰ aminopentanoic acid nucleobases (APNs)¹¹ or several analogues of PNA.¹²

The dipeptides 2 were designed, based on the structure of difluorotoluene nucleoside 1, as nonpolar nucleobase peptides. The preparation of the target compounds 2 undoubtedly could be accomplished by conventional peptide-synthesis procedures. However, this would require multi-step syntheses. The Ugi four-component coupling reaction has recently been shown to be a powerful method for the synthesis of amino acids, peptides and nucleobase-peptide chimaeras.^{13,14} We applied the method to the preparation of our dipeptides substituted with fluoroarylethyl pendent groups. Three components for performing the Ugi reaction, *i.e.*, oxo compounds, isocyanides and amino acids, are readily available. The key fluoroarylethylamines 6 were prepared as follows: The fluorophenylacetonitriles 11a-c were reduced by the treatment with aluminium trichloride and lithium aluminium hydride in THF¹⁵ to give the corresponding amines 6a-c in 50-70% yield. The amine 6d containing the 2,4-difluorotoluene moiety as a steric mimic for thymine was prepared from 5-bromo-2,4-difluorotoluene 12 as follows: Treatment of 12 with Mg, followed by formylation with N.Ndimethylformamide (DMF),¹⁶ gave the aldehyde 13 in 45% yield, which was then converted into nitroalkene 14 via nitroaldol reaction using nitromethane (53% yield) and subsequent dehydration by methanesulfonyl chloride¹⁶ in 61% yield. The product 14 was reduced by the action of lithium aluminium hydride in THF-Et₂O¹⁷ to give 2,4-difluoro-5-methylphenethylamine 6d in 63% yield (Scheme 2).

The key Ugi reaction was very easy to execute and the desired protected dipeptides **2** were obtained in a single-step one-pot

Scheme 2 Reagents and conditions (and yields): i, AlCl₃, LiAlH₄, THF, 0 °C (50–70%); ii, Mg, DMF, THF, 0 °C (45%); iii, MeNO₂, KOH–MeOH (53%); iv, MsCl, Et₃N CH₂Cl₂ (61%); v, LiAlH₄, THF–Et₂O, reflux (63%).

procedure (Scheme 1 and Table 1). Table 1 shows the results of the Ugi reaction using acetone as an oxo compound. The reactions proceeded with moderate yields for a variety of different substituted isocyanides 8 and fluoroarylethylamines 6 to furnish fluoroaromatically pendented dipeptides 2 with an *N*-substituted Aib fragment. When CNCH₂COOEt 8b was used for the reaction, corresponding tripeptides 2c and 2f were obtained (entries 3 and 6). It is interesting to note that 1-iso cyanocyclohexene 8c was also used in the Ugi reaction to lead to dipeptides having a cyclohexenamide moiety which can be converted to a variety of functional groups (Table 1, entry 4).¹⁸ Since the *N*-alkyl-Aib moiety is known to stabilize helical conformations of mother peptides,¹⁹ the introduction of the resulting dipeptides, Gly–Aib 2, into oligopeptides would be interesting.

The Ugi reaction was next performed with formaldehyde instead of acetone in order to prepare N-fluoroarylethyl dipeptides **3** based on the Gly–Gly framework. N-Boc-glycine **7b** was treated with *p*-fluorophenethylamine **6a**, *tert*-butyl isocyanide **8a** and paraformaldehyde in methanol to furnish N-nonpolar nucleobase dipeptide **3a** in 41% yield. The dipeptide **3b** was obtained by a similar treatment of N-Boc-glycine **7b** with 2,4-difluoro-5-methylphenethylamine **6d**, 1-isocyanocyclohexene **8c** and paraformaldehyde in 40% yield (Fig. 2).

Fig. 2 Dipeptides 3 consisting of a Gly-Gly framework.

N-Fluoroarylethyl dipeptides **2d** (Table 1, entry 4) and **3b** (Fig. 2), each having a cyclohexenamide moiety, were converted to the corresponding free dipeptides **2h** and **3c** in 100% and 91% yield, respectively, by treatment with 3 M HCl in THF (Fig. 3).

Finally we briefly show the additional utility of the method for a single-step synthesis of peptoid nucleic acid derivatives. Peptoid nucleic acids have been obtained by interchanging the positions of backbone CH₂ and side-chain CO groups of PNAs (Fig. 4). In contrast to PNAs, peptoid nucleic acids have

Fig. 4 Structures of peptoid nucleic acid and peptide nucleic acid (PNA).

not attracted much attention. However it has been recently found that a peptoid nucleic acid having thymine as the base is hybridized with DNA and the relative stability of the duplex is higher than that of DNA/DNA.¹⁰

Since peptoid nucleic acids are prepared by a conventional stepwise procedure,¹⁰ we performed the preparation of the derivatives using our one-pot method. The nucleobase ethyleneamines **15a,b** used for the Ugi reaction were prepared as follows: Potassium phthalimide **16** was converted into the bromide **17** by treating with 1,2-dibromoethane in 73% yield. Then **17** was coupled with uracil or thymine in DMSO to give the respective compound **18a,b** in 65–66% yield. Compounds **18a,b** were converted to the corresponding amines **15a,b** by reduction with *n*-butylamine in methanol²⁰ in high yields.

One-pot preparation of peptoid nucleic acid derivatives was achieved by the Ugi four-component condensation of the amines **15a,b** with Z-glycine **7a**, acetone and *tert*-butyl isocyanide **8a** to furnish peptoid nucleic acid monomer derivatives **19a,b**, in 50% and 46% yield, respectively (Scheme 3).

Scheme 3 Reagents and conditions (and yields): i, 1,2-dibromoethane, DMF, rt (73%); ii, uracil or thymine, DMSO, K_2CO_3 , rt [66% (R = H), 65% (R = Me)]; iii, *n*-butylamine, MeOH, reflux [74% (R = H), 80% (R = Me)]; iv, ZNHCH₂COOH 7a, CNBu' 8a, acetone, MeOH, MS 3 Å, -78 °C; then rt, 1 week.

Design and synthesis of nonpolar nucleobase dipeptides 4, 5 based on a β Ala–Aib or β Ala–Gly framework

One of the recent modifications of DNA structure is 2',5'linked isoDNA where the connecting phosphodiester is linked *via* a 2',5' linkage of 3'-deoxyriboses instead of the 3',5'linkage of 2'-deoxyriboses of natural DNA.²¹ IsoDNA **20** has recently drawn much interest from researchers due to its ability to form a heteroduplex with RNA that is as stable as the comparable normal DNA/RNA duplexes.²¹

We next focused our attention to try to synthesize β -alanyl dipeptides **4**, substituted with fluoroarylmethyl pendent groups, by the Ugi reaction, which products were designed based on the structure of isoDNA **20** (Fig. 5). Constituent elements of **4** are a

β-alanine, an α-amino acid, and a fluoroarylmethyl unit. This arrangement was chosen because of the seven-atom spacing that can be found between the nucleobases in 2',5'-linked isoDNA, and because the optimal number of bonds between the nucleobases and the backbone was found to be one.

The fluorobenzylamines **9** for the Ugi reaction were obtained as follows: *p*-Fluorobenzylamine **9a** and 2,4-difluorobenzylamine **9b** are commercially available and, *ar*-pentafluorobenzylamine **9c** was readily prepared by refluxing pentafluorobenzonitrile **21** with BH₃·THF complex in THF.²² 2,4-Difluoro-5methylbenzylamine **9d** was prepared from 5-bromo-2,4difluorotoluene **12** in two steps. The bromo difluorotoluene **12** was converted into the corresponding cyanide **22** by treatment with copper(I) cyanide in DMF at 160 °C then²³ in 50% yield. The cyanide **22** was reduced to **9d** under refluxing with BH₃· THF complex in THF²² in 67% yield (Scheme 4).

The Ugi condensation of the four components, fluorobenzylamines **9a–d**, *N*-protected β -alanines **10**, acetone, and isocyanides **8** successfully produced the target dipeptides, β Ala– Aib(*N*-fluoroarylmethyl) **4a–f** in a single step, in 43–66% yield (Scheme 1 and Table 2). There is little difference between the yields of the compounds in the β Ala–Aib series and those in the Gly–Aib series (Table 1 and Table 2). A variety of fluorobenzylamines **9**, including **9d** as a thymine isostere, were incorporated to produce dipeptides **4a,b,d–f** and tripeptide **4c** in a single step.

Finally dipeptides **5** based on the β Ala–Gly framework were synthesized. Boc– β Ala–Gly(*N*-*p*-fluorophenylmethyl)-NBu^t **5a** was prepared from the coupling of *N*-Boc- β -alanine **10b** with *p*-fluorobenzylamine **9a**, *tert*-butyl isocyanide **8a**, and paraformaldehyde in 45% yield. The dipeptide **5b** was also prepared

Table 2 Synthesis of nonpolar nucleobase dipeptides 4 [βAla–Aib(*N*-fluoroarylmethyl)]^{*a*}

Entry	β -Alanines 10 ^b	F-Ar-CH ₂ NH ₂ 9	CNR ¹ 8	Product 4	Yield (%) ^{<i>c</i>}
1	10a	<i>p</i> -Fluorobenzylamine 9a	CNBu ^t 8a	4a	59
2	10a	2,4-Difluorobenzylamine 9b	$CNBu^{t}$ 8a	4b	66
3	10a	2,4-Difluorobenzylamine 9b	CNCH ₂ COOEt 8b	4c	44
4	10b	2,4-Difluorobenzylamine 9b	CN-cyclohex-1-enyl 8c	4d	43
5	10a	ar-Pentafluorobenzylamine 9c	$CNBu^{t}$ 8a	4 e	43
6	10a	2,4-Difluoro-5-methylbenzylamine 9d	CNBu ^t 8a	4 f	43

^{*a*} The Ugi reaction was performed using β-alanines **10** (ProtNHCH₂CH₂COOH), amines **9** (F–Ar–CH₂NH₂), isocyanides **8** (CNR¹) in MeOH to give dipeptides **4** (see Scheme 1). ^{*b*} **10a**: ZNHCH₂CH₂COOH, **10b**: BocNHCH₂CH₂COOH. ^{*c*} Yields were based on the amines **9** employed.

Scheme 4 Reagents and conditions (and yields): i, BH₃·THF complex, THF, reflux; then 2.6 M HCl, reflux (98%); ii, CuCN, DMF, 160 °C (50%); iii, BH₃·THF complex, THF, reflux; then 2.6 M HCl, reflux (67%).

by a similar treatment of *N*-Boc- β -alanine **10b**, 2,4-difluoro-5methylbenzylamine **9d**, 1-isocyanocyclohexene **8c** and paraformaldehyde in 41% yield (Fig. 6).

Fig. 6 Dipeptides 5 consisting of a βAla-Gly framework.

Both β Ala–Aib **4d** (Table 2, entry 4) and β Ala–Gly **5b** (Fig. 6), which have the cyclohex-1-enamide moiety, were deprotected under acidic conditions to give free dipeptides **4g** and **5c** in 96% and 92% yields (Fig. 7).

Conclusion

We have demonstrated a single-step synthesis of a series of dipeptides, having fluoroaromatic groups appended to the nitrogen atom as isosteric replacements for thymine, by Ugi reaction. The peptides are regarded to be N-nonpolar nucleobase dipeptides. Of particular note to our method is its applicability to those peptides containing a variety of amino acids (not only α - and β -, but also χ -amino acids) attached to a diverse series of fluoroarylalkyl groups. Incorporation of species 2, 3, 4 and 5 into oligopeptides are now under investigation. In addition, we plan to extend application of this reaction for the synthesis of nonpolar peptoid nucleic acids. \dagger

Experimental

Melting points were recorded on a Yanagimoto micro-melting apparatus and are uncorrected. IR spectra (cm⁻¹) were recorded on a Perkin-Elmer 1600 spectrometer. ¹H NMR spectra were measured as solutions in CDCl₃, CD₃OD or D₂O and chemical shifts are expressed in ppm relative to internal Me₄Si (δ 0.00) and were recorded on a JEOL GX-270 (270 MHz) spectrometer. ¹⁹F NMR spectra were measured with CFCl₃ as an internal standard and were taken with a JEOL GX-270 (254 MHz) spectrometer. Upfield shifts are quoted as negative δ -values.

The following abbreviations are used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. J-Values are given in Hz. ¹³C NMR spectra were recorded at 125.76, 75.46 and 68 MHz using Unity plus 500, Varian Gemini 300 and JEOL GX-270 instruments. Chemical shifts are quoted in $\delta_{\rm C}$ / ppm and are referenced to CDCl₃. Electron ionization (EI) mass spectra were taken with a JEOL JMS-D300 spectrometer. Column chromatography and preparative TLC (PLC) were performed on BW-200 (Fuji Silysia) and Kieselgel 60 (Merck, art. 7748), respectively. All reactions were carried out under a dry N₂ atmosphere. Unless otherwise noted, reagents were added by syringe. MeOH was distilled from CaO immediately prior to use.

General procedure for the preparation of amines 6a-c

First the reducing agent was prepared by adding a solution of aluminium chloride (1.47 g, 11.0 mmol) in THF (15 ml) to a stirred suspension of lithium aluminium hydride (0.417 g, 11.0 mmol) in THF (10 ml) with stirring for 5 min. To this mixture was added a fluorophenylacetonitrile 11a-c (1.00 g) at 0 °C and stirred for 1 h. The reaction was quenched by adding ice-water (30 ml). The phases were separated and the aqueous phase was extracted twice with diethyl ether (50 ml \times 2), diluted with aq. ammonia (50 ml), and stirred for an additional 20 min. The precipitate formed was filtered off and the phases were separated. This treatment was repeated twice. The organic phases were combined and extracted with 3 M HCl to trap the free amine. The aqueous portion was made alkaline with 1 M NaOH solution and extracted with diethyl ether (50 ml). The extract was dried over Na₂SO₄ and evaporated to give the corresponding amine 6a-c in 50-70% yield, which were used for the Ugi reaction without further purification.

p-Fluorophenethylamine $6a.^{24}$ Prepared by following the general procedure from **11a** (1.00 g, 7.31 mmol) as a yellow oil

[†] We have accomplished the synthesis of nonpolar peptide nucleic acids^{2d} but the synthesis of nonpolar peptoid nucleic acid has not yet done. The framework of 2 and 3 is as same as that of peptoid nucleic acids. However it lacks a methyl group on the glycyl nitrogen atom. Therefore the peptides 2 and 3 are not considered to be nonpolar peptoid nucleic acids as they are.

(729 mg, 70%); v_{max} (neat)/cm⁻¹ 3436, 3003, 1603, 1511, 1385, 1230, 1158, 1098, 1018; $\delta_{\rm H}$ (CDCl₃) 2.71 (2H, br t, *J* 6.9, CH₂CH₂N), 2.93 (2H, br t, *J* 6.9, CH₂CH₂N), 6.96 (2H, m, ArH), 7.15 (2H, m, ArH); $\delta_{\rm F}$ (CDCl₃) –117.8 (m); *m*/*z* (EI) 140 (M⁺ + 1), 139 (M⁺), 122 (M⁺ – NH₃); HRMS Found: M⁺, 139.0819. C₈H₁₀FN requires *M*, 139.0797.

2,4-Difluorophenethylamine 6b.²⁵ Prepared by following the general procedure from **11b** (1.00 g, 6.53 mmol) as a yellow oil (694 mg, 67%); v_{max} (neat)/cm⁻¹ 3435, 3294, 2999, 1504, 1138, 965; $\delta_{\rm H}$ (CDCl₃) 2.73 (2H, br t, *J* 6.9, CH₂CH₂N), 2.91 (2H, br t, *J* 6.9, CH₂CH₂N), 6.81 (2H, m, ArH), 7.18 (1H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -114.6 (m), -115.7 (br q, *J* 7.8); *m*/*z* (EI) 157 (M⁺), 156 (M⁺ - 1), 140 (M⁺ - NH₃); HRMS Found: M⁺, 157.0694. C₈H₉F₂N requires *M*, 157.0703.

ar-Pentafluorophenethylamine 6c.²⁶ Prepared by following the general procedure from 11c (1.00 g, 4.82 mmol) as a yellow oil (510 mg, 50%); v_{max} (neat)/cm⁻¹ 3422, 2969, 1504, 1247, 1121, 1083, 960; δ_{H} (CDCl₃) 2.82 (2H, br t, *J* 6.5, CH₂CH₂N), 2.96 (2H, br t, *J* 6.5, CH₂CH₂N); δ_{F} (CDCl₃) -144.1 (dd, *J* 6.8, 15.2), -157.5 (t, *J* 10.7), -163.2 (td, *J* 7.6, 13.2); *m*/*z* (EI) 211 (M⁺), 210 (M⁺ - 1), 194 (M⁺ - NH₃); HRMS Found: M⁺, 211.0374. C₈H₆F₅N requires *M*, 211.0395.

Preparation of 2,4-difluoro-5-methylphenethylamine 6d

2.4-Difluroro-5-methylbenzaldehyde 13. A solution of 12^{1a} (5.0 g, 24.3 mmol) in THF (20 ml) was added to magnesium turnings (641 mg, 26.7 mmol) in THF (20 ml) under nitrogen at such a rate to maintain reflux. The reaction was initiated by the addition of a few crystals of iodine with occasional warming. After formation of Grignard reagent by stirring at room temperature for about 1 h, a mixture of freshly distilled DMF (1.87 ml, 24.3 mmol) and THF (10 ml) was added to the stirred mixture at 0 °C during 5 min. The mixture was stirred on the ice-bath for 45 min and then at room temperature for 4 h. A simple work-up according to the literature procedure¹⁶ and subsequent purification by column chromatography on silica gel (hexane-ethyl acetate 8 : 2) afforded aldehyde 13 (2.40 g, 45%) as a yellow oil; v_{max} (neat)/cm⁻¹ 2931, 2861, 1692 (CHO), 1491, 1266, 1175, 849; $\delta_{\rm H}$ (CDCl₃) 2.27 (3H, s, ArCH₃), 6.85 (1H, t, J 9.6, ArH), 7.72 (1H, t, J 8.1, ArH), 10.24 (1H, s, CHO); $\delta_{\rm F}$ (CDCl₃) -101.6 (m), -122.4 (m); *m*/*z* (EI) 156 (M⁺), 155 (M^+ - 1); HRMS Found: (M^+ - 1), 155.0139. C₈H₅F₂O requires m/z, 155.0139.

2,4-Difluoro-5-methyl-β-nitrostyrene 14. A mixture of **13** (2.4 g, 15.5 mmol) and nitromethane (7.40 ml, 137 mmol) was stirred under nitrogen and treated with 3 M methanolic KOH until pH 8 was attained. After being stirred for 1 h the solution was acidified to pH 4 with concentrated sulfuric acid. The mixture was added to water (50 ml) and extracted with diethyl ether (50 ml × 2). The extracts were combined and successively washed with saturated aq. sodium hydrogen carbonate (20 ml) and brine (10 ml), and dried over Na₂SO₄. Concentration under reduced pressure followed by column chromatography on silica gel (hexane–ethyl acetate 8 : 2) afforded the nitro alcohol intermediate (1.76 g, 53%).

The nitro alcohol intermediate (1.76 g, 8.11 mmol) and mesyl chloride (0.690 ml, 8.92 mmol) were stirred under nitrogen in dichloromethane (15 ml). Triethylamine (2.26 ml, 16.2 mmol) was added during 5 min and the reaction mixture was boiled gently and then stirred for 1.5 h at room temperature. After work-up according to the literature procedure,¹⁶ concentration under reduced pressure followed by column chromatography on silica gel (hexane–ethyl acetate 9 : 1) furnished nitro alkene 14 (1.0 g, 61%) as a yellowish solid; v_{max} (neat)/cm⁻¹ 2932, 1637, 1515, 1347, 1105, 967; $\delta_{\rm H}$ (CDCl₃) 2.28 (3H, s, ArCH₃), 6.89 (1H, t, J 9.8, ArH), 7.34 (1H, t, J 8.1, ArH), 7.66 (1H, d, J 13.8,

CH=CHNO₂), 7.98 (1H, d, J 13.8, CH=CHNO₂); $\delta_{\rm F}$ (CDCl₃) -105.4 (q, J 9.2), -109.4 (q, J 10.1); m/z (EI) 199 (M⁺); HRMS Found M⁺, 199.0424. C₉H₇F₂NO₂ requires M, 199.0445.

2,4-Difluoro-5-methylphenethylamine 6d. A solution of **14** (500 mg, 2.51 mmol) in anhydrous THF (8 ml) was added dropwise to a well-stirred suspension of LiAlH₄ (286 mg, 7.53 mmol) in anhydrous diethyl ether (10 ml), and the mixture was refluxed for 4 h. Excess of LiAlH₄ was destroyed by the dropwise addition of water (2 ml) and 15% NaOH solution (5 ml). The combined filtrate was concentrated to dryness under reduced pressure and oily amine **6d** (273 mg, 63%) was obtained which was used for the Ugi reaction without further purification; v_{max} (neat)/cm⁻¹ 3664, 3009, 2932, 1578, 1494, 1179, 958; $\delta_{\rm H}$ (CDCl₃) 2.21 (3H, s, ArCH₃), 2.71 (2H, br t, *J* 6.4, CH₂CH₂N), 2.92 (2H, br t, *J* 6.4, CH₂CH₂N), 6.73 (1H, m, ArH); $\delta_{\rm F}$ (CDCl₃) –113.7 (q, *J* 7.8), –115.1 (q, *J* 7.8); *m*/*z* (EI) 171 (M⁺); HRMS Found: M⁺, 171.0860.

Typical experimental procedure for the preparation of dipeptides 2 by the Ugi four-component condensation reaction: *N*-Benzyl-oxycarbonylglycyl-*N*-(4-fluorophenylethyl)-2-methylalanine (*N*-tert-butyl)amide 2a [Z-Gly-Aib(*N*-4-fluorophenylethyl)-NBu']

The amine 6a (200 mg, 1.52 mmol) and acetone (176 mg, 3.04 mmol) were dissolved in distilled methanol (10 ml) in a flask containing molecular sieves 3 Å, dried previously for at least half an hour. The mixture was stirred for 1 h and then N-protected amino acid 7a (635 mg, 3.04 mmol) was added directly into the flask in one portion. A solution of tert-butyl isocyanide 8a (252 mg, 3.04 mmol) in methanol (1 ml) was added to the flask at -78 °C in one portion. The resulting solution was stirred at room temperature for 1 week. When the reaction was complete by TLC (5-10% MeOH in CH₂Cl₂), the reaction mixture was filtered and the solvent was removed in vacuo. The residue was chromatographed on silica gel BW200, eluting with 0-5% methanol in CH₂Cl₂ gradient to give 2a (301 mg, 42%) as a colourless solid; mp 83-84 °C (from ethyl acetate-hexane) (Found: C, 65.93; N, 8.84; H, 7.20. Calc. for C₂₆H₃₄FN₃O₄: C, 66.22; N, 8.91; H, 7.27%); v_{max} (neat)/cm⁻¹ 3410, 3337, 1715, 1663, 1510; δ_H (CDCl₃) 1.29 (9H, s, Bu'), 1.55 (6H, s, Me₂C<), 2.93 (2H, br t, J 8.2, CH₂CH₂N), 3.48 (2H, br t, J 8.2, CH₂CH₂N), 4.04 (2H, d, J 4.3, CH₂CON), 5.11 (2H, s, PhCH₂), 5.46 (1H, br s, NH), 5.74 (1H, br s, NH), 6.99 (2H, t, J 8.5, ArH), 7.18 (2H, m, ArH), 7.29 (5H, m, ArH); δ_F (CDCl₃) -117.2 (m); δ_{C} (75.45 MHz; CDCl₃) 24.83 [C(CH₃)₂], 28.82 [C(CH₃)₃], 37.07 (CH₂), 43.74 (CH₂), 45.61 (CH₂), 51.26 [C(CH₃)₃], 63.23 [C(CH₃)₂], 67.08 (CH₂), 115.88 (d, ²J_{C,F} 21.8, F-Ar-CH), 128.05, 128.18, 128.57 (each s, 5 × Ar-CH), 130.05 (d, ³J_{C.F} 8.5, F–Ar–CH), 133.39 (d, ⁴J_{C.F} 3.7, F–Ar–C), 136.43 (Ar–C, *ipso*), 156.33 (C=O), 161.84 (d, ¹J_{C,F} 244.0, Ar–C–F), 168.25 (C=O), 173.40 (C=O); m/z (EI) 471 (M⁺); HRMS Found: M⁺, 471.2552. C₂₆H₃₄FN₃O₄ requires *M*, 471.2570.

N-Benzyloxycarbonylglycyl-*N*-(2,4-difluorophenylethyl)-2methyalanine (*N*-*tert*-butyl)amide 2b [Z-Gly-Aib(*N*-2,4-difluorophenylethyl)-NBu']. Condensation of 6b (160 mg, 1.02 mmol), acetone (147 mg, 2.53 mmol), 7a (531 mg, 2.54 mmol) and 8a (211 mg, 2.54 mmol) gave 2b (250 mg, 51%) as a white solid; mp 89–90 °C (from ethyl acetate–hexane) (Found: C, 63.42; N, 8.25; H, 6.72. Calc. for C₂₆H₃₃F₂N₃O₄: C, 63.79; N, 8.58; H, 6.79%); v_{max} (neat)/cm⁻¹ 3415, 3322, 1715, 1664, 1507; $\delta_{\rm H}$ (CDCl₃) 1.32 (9H, s, Bu'), 1.54 (6H, s, Me₂C<), 2.96 (2H, br t, *J* 7.9, CH₂CH₂N), 3.48 (2H, br t, *J* 7.9, CH₂CH₂N), 4.09 (2H, d, *J* 5.4, CH₂CON), 5.12 (2H, s, PhCH₂), 5.45 (1H, br s, NH), 5.71 (1H, br s, NH), 6.82 (2H, m, ArH), 7.18 (1H, m, ArH), 7.35 (5H, m, ArH); $\delta_{\rm F}$ (CDCl₃) –111.5 (br quintet, *J* 7.3), –114.1 (br q, *J* 8.3); $\delta_{\rm C}$ (68 MHz; CDCl₃) 24.48 [C(CH₃)₂], 28.53 [C(CH₃)₃], 31.12 (CH₂), 43.42 (CH₂), 43.73 (CH₂), 51.01] $\begin{array}{l} C({\rm CH}_3)_3], \ 63.04 \ [C({\rm CH}_3)_2], \ 68.86 \ ({\rm CH}_2), \ 104.13 \ (t, \ ^2J \ 25.7, \ F-\\ {\rm Ar-CH}), \ 111.65 \ ({\rm dd}, \ ^2J_{{\rm C},{\rm F}} \ 21.2, \ ^4J_{{\rm C},{\rm F}} \ 3.8, \ {\rm F-Ar-CH}), \ 120.19 \ ({\rm dd}, \ ^2J_{{\rm C},{\rm F}} \ 16.2, \ ^4J_{{\rm C},{\rm F}} \ 3.8, \ {\rm F-Ar-CH}), \ 120.19 \ ({\rm dd}, \ ^2J_{{\rm C},{\rm F}} \ 16.2, \ ^4J_{{\rm C},{\rm F}} \ 3.8, \ {\rm F-Ar-CH}), \ 120.19 \ ({\rm dd}, \ ^2J_{{\rm C},{\rm F}} \ 16.2, \ ^4J_{{\rm C},{\rm F}} \ 3.8, \ {\rm F-Ar-CH}), \ 120.19 \ ({\rm dd}, \ ^2J_{{\rm C},{\rm F}} \ 16.7, \ {\rm F-Ar-CH}), \ 120.19 \ ({\rm dd}, \ ^3J_{{\rm C},{\rm F}} \ 9.5, \ ^3J_{{\rm C},{\rm F}} \ 6.7, \ {\rm F-Ar-CH}), \ 136.39 \ ({\rm Ar-C}, \ ipso), \ 156.32 \ ({\rm C=O}), \ 161.09 \ ({\rm dd}, \ ^1J_{{\rm C},{\rm F}} \ 247.0, \ ^3J_{{\rm C},{\rm F}} \ 11.7, \ {\rm Ar-C-F}), \ 162.12 \ ({\rm dd}, \ ^1J_{{\rm C},{\rm F}} \ 247.0, \ ^3J_{{\rm C},{\rm F}} \ 11.7, \ {\rm Ar-C-F}), \ 168.42 \ ({\rm C=O}), \ 173.39 \ ({\rm C=O}); \ m/z \ ({\rm EI}) \ 489 \ ({\rm M}^+); \ {\rm HRMS} \ {\rm Found:} \ {\rm M}^+, \ 489.2393. \ {\rm C}_{26}{\rm H}_{33}{\rm F}_2{\rm N}_3{\rm O}_4 \ {\rm requires} \ M, \ 489.2416. \end{array}$

[*N*-Benzyloxycarbonylglycyl-*N*-(2,4-difluorophenylethyl)-2methylalanyl]glycine ethyl ester 2c [*Z*-Gly-Aib(*N*-2,4-difluorophenylethyl)-Gly-OEt]. Condensation of 6b (200 mg, 1.27 mmol), acetone (147 mg, 2.54 mmol), 7a (532 mg, 2.54 mmol) and 8b (288 mg, 2.54 mmol) gave 2c (280 mg, 42%) as an oil; $v_{\rm max}$ (neat)/cm⁻¹ 3194, 3077, 1626, 1506, 1457; $\delta_{\rm H}$ (CDCl₃) 1.29 (3H, t, *J* 7.1, OCH₂CH₃), 1.61 (6H, s, Me₂C<), 2.99 (2H, br t, *J* 7.8, CH₂CH₂N), 3.51 (2H, br t, *J* 7.8, CH₂CH₂N), 3.99 (2H, d, *J* 2.7, CH₂CON), 4.11 (2H, d, *J* 2.7, NCH₂CO), 4.21 (2H, q, *J* 7.2, OCH₂CH₃), 5.11 (2H, s, PhCH₂), 5.71 (1H, br s, NH), 6.22 (1H, br s, NH), 6.84 (2H, m, ArH), 7.22 (1H, m, ArH), 7.34 (5H, m, ArH); $\delta_{\rm F}$ (CDCl₃) –111.5 (br quintet, *J* 7.4), –114.2 (br q, *J* 8.3); *m/z* (EI) 519 (M⁺); HRMS Found: M⁺ 519.2258. C₂₆H₃₁F₂N₃O₆ requires *M*, 519.2275.

N-tert-Butoxycarbonylglycyl-*N*-(2,4-difluorophenylethyl)-2methylalanine (*N*-cyclohex-1-enyl)amide 2d [Boc-Gly-Aib(*N*-2,4-difluorophenylethyl)-*N*(cyclohex-1-enyl)]. Condensation of 6b (200 mg, 1.27 mmol), acetone (147 mg, 2.54 mmol), 7b (444 mg, 2.54 mmol) and 8c (272 mg, 2.54 mmol) gave 2d (275 mg, 45%) as a colourless oil; ν_{max} (neat)/cm⁻¹ 3423, 3010, 1702, 1505, 1425, 854; $\delta_{\rm H}$ (CDCl₃) 1.43 (9H, s, Bu'), 1.59 (6H, s, Me₂C<), 1.69 (4H, m, CH₂ × 2), 2.13 (4H, m, CH₂ × 2), 2.97 (2H, br t, *J* 8.2, CH₂CH₂N), 3.49 (2H, br t, *J* 8.2, CH₂CH₂N), 4.03 (2H, d, *J* 4.3, CH₂CON), 5.47 (1H, br s, NH), 6.04 (1H, br s, CH=C<), 6.55 (1H, br s, NH), 6.85 (2H, m, ArH), 7.19 (1H, m, ArH); $\delta_{\rm F}$ (CDCl₃) –111.2 (m), –113.6 (m); *m*/*z* (EI) 479 (M⁺); HRMS Found: M⁺, 479.1515. C₂₅H₃₅N₃F₂O₄ requires *M*, 479.1526.

N-Benzyloxycarbonylglycyl-N-(pentafluorophenylethyl)-2-

methylalanine (N-tert-butyl)amide 2e [Z-Gly-Aib(N-pentafluorophenylethyl)-NBu']. Condensation of 6c (200 mg. 0.947 mmol), acetone (110 mg, 1.89 mmol), 7a (394 mg, 1.89 mmol) and 8a (157 mg, 1.89 mmol) gave 2e (235 mg, 45%) as a white solid; mp 64-65 °C (from ethyl acetate-hexane) (Found: C, 57.40; N, 7.54; H, 5.59. Calc. for C₂₆H₃₀F₅N₃O₄: C, 57.45; N, 7.73; H, 5.56%); v_{max} (neat)/cm⁻¹ 3378, 3317, 1735, 1659, 1510; $\delta_{\rm H}$ (CDCl₃) 1.33 (9H, s, Bu'), 1.55 (6H, s, Me₂C<), 3.09 (2H, br t, J 8.2, CH₂CH₂N), 3.47 (2H, br t, J 8.2, CH₂CH₂N), 4.11 (2H, d, J 4.6, CH₂CON), 5.12 (2H, s, PhCH₂), 5.46 (1H, br s, NH), 5.66 (1H, br s, NH), 7.34 (5H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -143.7 (dd, J 7.3, 22.3), -155.88 (t, J 20.3), -161.6 (td, J 7.5, 21.7); δ_C (68 MHz; CDCl₃) 14.16 (CH₂), 24.99 [C(CH₃)₂], 28.51 [C(CH₃)₃], 42.28 (CH₂), 43.30 (CH₂), 51.12 [C(CH₃)₃], 63.06 [C(CH₃)₂], 66.91 (CH₂), 110.5 (m, Ar-C-F), 127.99, 128.08, 128.46 (each s, 5 × Ar–CH), 137.5 (dm, ${}^{1}J_{C,F}$ 254.0, Ar–C–F), 136.33 (Ar-C, ipso), 140.28 (dm, ¹J_{C,F} 254.0, Ar-C-F), 145.10 (dm, ¹J_{C,F} 257.0, F–Ar–C), 156.31 (C=O), 168.55 (C=O), 173.24 (C=O); *m*/*z* (EI) 543 (M⁺); HRMS Found: M⁺, 543.1118. $C_{26}H_{30}F_5N_3O_4$ requires M, 543.1141.

[*N*-Benzyloxycarbonylglycyl-*N*-(pentafluorophenylethyl)-2methylalanyl]glycine ethyl ester 2f [Z-Gly-Aib(*N*-pentafluorophenylethyl)-Gly-OEt]. Condensation of 6c (200 mg, 0.947) mmol), acetone (110 mg. 1.89 mmol), 7a (394 mg, 1.89 mmol) and 8b (214 mg, 1.89 mmol) gave 2f (280 mg, 51%) as a white solid; mp 64–65 °C (from ethyl acetate–hexane); v_{max} (neat)/cm⁻¹ 3333, 2986, 1726, 1663, 1506; $\delta_{\rm H}$ (CDCl₃) 1.25 (3H, t, *J* 7.1, OCH₂CH₃), 1.61 (6H, s, Me₂C<), 3.09 (2H, br t, *J* 8.0, CH₂CH₂N), 3.51 (2H, br t, *J* 8.0, CH₂CH₂N), 3.98 (2H, d, *J* 4.8, CH₂CON), 4.14 (2H, br d, *J* 4.8, NHCH₂CO), 4.20 (2H, q, *J* 7.1, OCH₂CH₃), 5.10 (2H, s, PhCH₂), 5.78 (1H, br s, NH), 6.36 (1H, br s, NH), 7.33 (5H, m, ArH); $\delta_{\rm F}$ (CDCl₃) –139.1 (dd, *J* 8.3, 22.0), –150.8 (t, *J* 20.8), –157.1 (td, *J* 13.9, 21.0); *m*/*z* (EI) 573 (M⁺), 553 (M⁺ – HF); HRMS Found: M⁺ 573.1924. C₂₆H₂₈F₅N₃O₆ requires *M*, 573.1950.

N-Benzyloxycarbonylglycyl-*N*-(2,4-difluoro-5-methylphenylethyl)-(2-methylalanine *N*-tert-butyl)amide 2g [Z-Gly-Aib(*N*-2,4-difluoro-5-methylphenylethyl)-NBu']. Condensation of 6d (200 mg, 1.16 mmol), acetone (134 mg, 2.32 mmol), 7a (540 mg, 2.58 mmol) and 8a (214 mg, 2.58 mmol) gave 2g (255 mg, 43%) as a colourless oil; v_{max} (neat)/cm⁻¹ 3425, 3328, 1746, 1673, 1528, 1452; $\delta_{\rm H}$ (CDCl₃) 1.27 (9H, s, Bu'), 1.34 (6H, s, Me₂C<), 1.62 (3H, s, ArCH₃), 2.48 (2H, br t, *J* 5.0, CH₂CH₂N), 3.47 (2H, br t, *J* 5.0, CH₂CH₂N), 4.54 (2H, br s, CH₂CON), 5.08 (2H, s, PhCH₂), 5.44 (1H, br s, NH), 5.52 (1H, br s, NH), 6.82 (1H, m, ArH), 7.34 (5H, m, ArH), 7.71 (1H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -111.7 (br quintet, *J* 6.9), -115.2 (br q, *J* 8.6); *m*/*z* (EI) 506 (M⁺ + 3), 503 (M⁺); HRMS Found: (M⁺ + 3), 506.2835. C₂₇H₃₈F₂N₃O₄ requires *m*/*z*, 506.2830.

N-tert-Butoxycarbonylglycyl-*N*-(4-fluorophenylethyl)glycine (N-tert-butyl)amide 3a [Boc-Gly-Gly(N-4-fluorophenylethyl)-NBu']. Condensation of 6a (200 mg, 1.43 mmol), paraformaldehyde (515 mg, 2.86 mmol), 7b (500 mg, 2.86 mmol) and 8a (237 mg, 2.86 mmol) yielded **3a** (240 mg, 41%) as a yellow oily mixture of rotamers; v_{max} (neat)/cm⁻¹ 3423, 3330, 3071, 2976. 1663, 1511, 1231, 1098; $\overline{\delta}_{\rm H}$ (CDCl₃) 1.25, 1.27 (total 9H, each s, Bu'N), 1.33, 1.37 (total 9H, each s, Bu'O), 2.81 (2H, br t, J 7.3, NCH₂CH₂), 3.47 (2H, br t, J 7.3, NCH₂CH₂), 3.60, 3.76 (total 2H, each s, >NCH₂CO), 3.80 (2H, br s, NHCH₂CO), 5.26, 5.71 (total 1H, each br s, NH), 5.65, 6.01 (total 1H, each br s, NH), 6.92 (2H, m ArH), 7.06 (2H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -117.2 (m); $\delta_{\rm C}$ (68 MHz; CDCl₃) 28.30 [NC(CH₃)₃], 28.63 [OC(CH₃)₃], 33.85, 33.97 (each s, CH₂), 41.84, 42.20 (each s, CH₂), 49.79, 50.47 (each s, CH₂), 51.36, 51.72 [each s, NC(CH₃)₃], 51.99, 52.12 (each s, CH₂), 79.85 [OC(CH₃)₃], 115.55 (m, F-Ar-CH), 130.20 (m, F-Ar-CH), 133.14 (F-Ar-C), 155.75 (C=O), 161.84 (d, ¹J_{C.F} 245.0, Ar-C-F), 166.26, 167.71 (each s, C=O), 169.42, 169.54 (each s, C=O); m/z (EI) 410 (M⁺ + 1), 409 (M⁺), 354 $[(M^+ + 1) - Bu']$; HRMS Found: M⁺, 409.2379. C₂₁H₃₂FN₃O₄ requires M, 409.2377.

N-tert-Butoxycarbonylglycyl-*N*-(2,4-difluoro-5-methylphenylethyl)glycine (*N*-cyclohex-1-enyl)amide 3b [Boc-Gly-Gly(*N*-2,4difluoro-5-methylphenylethyl)-N(cyclohex-1-enyl)]. Condensation of 6d (200 mg, 1.16 mmol), paraformaldehyde (418 mg, 2.32 mmol), amino acid 7b (404 mg, 2.32 mmol) and 8c (248 mg, 2.32 mmol) gave 3b (216 mg, 40%) as a yellow oily mixture of rotamers; ν_{max} (neat)/cm⁻¹ 3423, 3318, 3017, 1682, 1508, 1369, 846; $\delta_{\rm H}$ (CDCl₃) 1.44 (9H, s, Bu'O), 1.65–2.26 (8H, m, CH₂ × 4), 2.21 (3H, s, ArCH₃), 2.89 (2H, m, CH₂CH₂N), 3.55 (2H, m, CH₂CH₂N), 3.79 (2H, m, NCH₂CO), 3.92 (2H, br s, CH₂CON), 5.28 (1H, br s), 5.41 (1H, br s), 6.08 (1H, br s), 6.79 (1H, m, ArH), 6.96 (1H, m, ArH); $\delta_{\rm F}$ (CDCl₃) –117.1 (m), –119.4 (m); *m*/*z* (EI) 465 (M⁺); HRMS Found: M⁺, 465.2460. C₂₄H₃₃F₂N₃O₄ requires *M*, 465.2439.

N'-(2,4-Difluorophenylethyl)-N-glycyl-2-methylalanine 2h [Gly-Aib(N-2,4-difluorophenylethyl)]. To a solution of 2d (30.0 mg, 0.062 mmol)) in THF (3 ml) was added 3 M HCl (2 ml) and the mixture was stirred overnight at room temperature. The reaction mixture was evaporated *in vacuo* and dissolved in water (10 ml). Then it was extracted with diethyl ether (50 ml). The aqueous portion was taken and evaporated with subsequent freeze drying to obtain 2h (19 mg, 100%) as a yellow oily mixture of rotamers; $\delta_{\rm H}$ (D₂O) 1.42, 1.44 (total 6H, each s, Me₂C<), 2.86 (2H, br t, *J* 8.1, C*H*₂CH₂N), 3.44 (2H, br t, *J* 8.1, CH₂C*H*₂N), 3.86 (2H, br d, *J* 8.9, CH₂CON), 6.85 (2H, m, ArH), 7.21 (1H, m, ArH); $\delta_{\rm F}$ (D₂O) -108.1 (m), -110.5 (m); *m*/*z* (EI) 300.13 (M⁺).

N'-(2,4-Difluoro-5-methylphenylethyl)-*N*-glycylglycine 3c [Gly-Gly(*N*-2,4-difluoro-5-methylphenylethyl)]. To a solution of 3b (20.0 mg, 0.04 mmol) in THF (4 ml) was added 3 M HCl (3 ml) and the mixture was stirred overnight at room temperature. The reaction mixture was evaporated in *vacuo* and the residue was dissolved in water (5 ml). Then it was extracted with diethyl ether (20 ml). The aqueous portion was taken and on evaporation with subsequent freeze drying gave 3c (11.2 mg, 91%) as a yellow oily mixture of rotamers; $\delta_{\rm H}$ (D₂O) 2.27 (3H, s, ArCH₃), 2.79 (2H, m, CH₂CH₂N), 3.52 (2H, m, CH₂CH₂N), 3.64, 3.80 (total 2H, each s, NCH₂CO), 3.96, 4.01 (total 2H, each s, NH₂CH₂CO), 6.86 (1H, m, ArH), 7.11 (1H, m, ArH); $\delta_{\rm F}$ (D₂O) –120.5 (m), –124.7 (m); *m*/z (EI) 286 (M⁺); HRMS Found: M⁺, 286.1131. C₁₃H₁₆F₂N₂O₃ requires *M*, 286.1111.

Preparation of amines 15a and 15b

N-(2-Bromoethyl)phthalimide 17. To a well-stirred solution of potassium phthalimide 16 (5.00 g, 27.0 mmol) in DMF (10 ml) was added 1,2-dibromoethane (6.91 ml, 81.0 mmol) and the reaction mixture was stirred overnight under nitrogen. After the completion of the reaction by TLC, the solvent was evaporated off under reduced pressure and the residue was dissolved in ethyl acetate (200 ml) and extracted with water (100 ml \times 2). The organic portion was washed successively with saturated aq. NH₄Cl and brine, dried over Na₂SO₄, and concentrated in vacuo to afford 17 (5.0 g, 73%) as a white crystalline solid; mp 220-221 °C (from dichloromethane-hexane) (Found: C, 47.42; N, 5.47; H, 3.18. Calc. for C₁₀H₈BrNO₂: C, 47.27; N, 5.51; H, 3.17%); v_{max} (KBr)/cm⁻¹ 3003, 2998, 1710, 1227, 923, 863; δ_H (CDCl₃) 3.62 (2H, t, J 6.6, NCH₂CH₂), 4.13 (2H, t, J 6.6, NCH₂CH₂), 7.26 (2H, m, ArH), 7.89 (2H, m, ArH); HRMS Found: M^+ , 253.9850. $C_{10}H_8^{79}BrNO_2$ requires M, 253.9817; and Found: M⁺, 255.9785. C₁₀H₈⁸¹BrNO₂ requires M, 255.9796.

1-(2-Phthalimidoethyl)uracil 18a. Uracil (5.00 g, 45.0 mmol) was dissolved in DMSO (100 ml) and then treated with K₂CO₃ (5.50 g, 40 mmol) and 17 (5.20 g, 20.5 mmol) for 12 h at room temperature. After the precipitate had been filtered off, the filtrate was concentrated under reduced pressure to a viscous vellowish liquid. The liquid was diluted with dichloromethane (100 ml) and extracted with water (50 ml). The water layer was also back-extracted with dichloromethane (50 ml). The combined organic layers were concentrated at reduced pressure and the resulting oil was dissolved in a small volume of dichloromethane and induced to crystallize with hexane to obtain 18a (3.86 g, 66%) as a white powder; mp 234-235 °C (from dichloromethane-hexane) (Found: C, 58.59; N, 14.56; H, 3.98. Calc. for C₁₄H₁₁N₃O₄: C, 58.95; N, 14.73; H, 3.89%); v_{max} (KBr)/ cm⁻¹ 3595, 3492, 3164, 3096, 1769, 1717, 1458; δ_H (5% CD₃OD in CDCl₃) 3.54 (4H, br s, NCH₂CH₂N), 5.49 (1H, d, J 7.8, uracil 5-H), 7.04 (1H, d, J 7.8, uracil 6-H), 7.68 (2H, m, ArH), 7.85 (2H, m, ArH); m/z (EI) 285 (M⁺); HRMS Found: M⁺, 285.0453. C₁₄H₁₁N₃O₄ requires M, 285.0453.

1-(2-Phthalimidoethyl)thymine 18b. Thymine (5.00 g, 39.5 mmol) was alkylated with **17** (5.20 g, 20.5 mmol) in a manner similar to the preparation of **18a** to obtain **18b** (4.0 g, 65%) as a white solid; mp 229–230 °C (from dichloromethane–hexane); $v_{\rm max}$ (KBr)/cm⁻¹ 3464, 3168 (NH), 2292, 1773, 1712 (C=O), 1391, 1184, 875; $\delta_{\rm H}$ (5% CD₃OD in CDCl₃) 2.46 (3H, s, 5-CH₃), 3.89–4.20 (4H, m, NCH₂CH₂N), 6.83 (1H, br s, thymine 6-H), 7.65 (4H, m, ArH); *m*/*z* (EI) 299 (M⁺); HRMS Found: M⁺, 299.0877. C₁₅H₁₃N₃O₄ requires *M*, 299.0906.

1-(2-Aminoethyl)uracil 15a. Compound **18a** (1.00 g, 3.50 mmol) was treated with a solution of *n*-butylamine–methanol (1 : 4; v/v) at reflux for 2 days. The reaction mixture was concentrated to dryness and then dissolved in 0.5 M HCl (50 ml). After extraction with diethyl ether (50 ml), the aqueous portion was evaporated under reduced pressure. The residue was dissolved in benzene–methanol (1 : 1) to form an azeotropic mixture, which was evaporated. A solid mass was formed, which was recrystallized from a mixture of MeOH–diethylether–chloroform to obtain **15a** (400 mg, 74%) as a off-white powder; v_{max} (KBr)/cm⁻¹ 3391, 3093, 1966, 1669, 1569, 1458, 1170, 1085; $\delta_{\rm H}$ (CD₃OD) 2.81 (2H, br t, *J* 7.3, CH₂CH₂NH₂), 4.05 (2H, br t, *J* 5.2, >NCH₂CH₂), 5.60 (1H, d, *J* 7.6, uracil 5-H), 7.52 (1H, d, *J* 7.6, uracil 6-H); *m/z* (EI) 155 (M⁺), 154 (M⁺ – 1); HRMS Found: M⁺, 155.0632. C₆H₉N₃O₂ requires *M*, 155.0655.

1-(2-Aminoethyl)thymine 15b. Compound **18b** (1.00 g, 3.30 mmol) was treated with a solution of *n*-butylamine–methanol (1 : 4; v/v) in a manner analogous to the preparation of **15a**. A similar work-up and recrystallization procedure gave **15b** (450 mg, 80%) as a white powder; v_{max} (KBr)/cm⁻¹ 3852, 3796, 1716, 1473, 1355, 913, 808; $\delta_{\rm H}$ (CD₃OD) 1.88 (1H, s, thymine 5-CH₃), 2.91 (2H, t, *J* 5.5, CH₂CH₂NH₂), 4.03 (2H, t, *J* 5.5, >NCH₂CH₂), 7.35 (1H, br s, thymine 6-H); *m*/*z* (EI) 169 (M⁺), 152 (M⁺ - NH₃); HRMS Found: (M⁺ - NH₃), 152.0521. C₇H₈N₂O₂ requires *m*/*z*, 152.0552.

N-Benzyloxycarbonylglycyl-*N'*-[2(uracil-1-yl)ethyl]-2-methylalanine (*N*-tert-butyl)amide 19a {Z-Gly-Aib[*N*-(uracil-1-yl)ethyl]-NBu'}. Condensation of 18a (200 mg, 1.29 mmol), acetone (149 mg, 2.58 mmol), 7a (540 mg, 2.58 mmol) and 8a (214 mg, 2.58 mmol) yielded 19a (320 mg, 50%) as a white solid; mp 84–85 °C (from ethyl acetate–hexane); v_{max} (neat)/cm⁻¹ 3343, 2978, 1675, 1518, 1455; $\delta_{\rm H}$ (CDCl₃) 1.34 (9H, s, Bu'), 1.52 (6H, s, Me₂C<), 3.64 (2H, br s, NCH₂CH₂N), 3.98 (4H, br s, NCH₂CH₂N + CH₂CON), 5.09 (2H, s, PhCH₂), 5.61 (2H, br s, NH × 2), 5.71 (1H, d, *J* 7.8, NCH=CHCO), 7.34 (5H, m, ArH), 7.47 (1H, d, *J* 7.8, NCH=CHCO), 8.33 (1H, br s, CONHCO); *m/z* (EI) 487 (M⁺); HRMS Found: M⁺, 487.2436. C₂₄H₃₃N₅O₆ requires *M*, 487.2442.

N-Benzyloxycarbonylglycyl-*N*-[2-(thymin-1-yl)ethyl]-2methylalanine (*N*-tert-butyl)amide 19b {Z-Gly-Aib[*N*-(thymin-1-yl)ethyl]-NBu'}. Condensation of 18b (200 mg, 1.18 mmol), acetone (139 mg, 2.36 mmol), 7a (491 mg, 2.36 mmol) and 8a (196 mg, 2.36 mmol) gave 19b (275 mg, 46%) as a white solid; mp 46–47 °C (from ethyl acetate–hexane); v_{max} (neat)/cm⁻¹ 3499, 3385, 1715, 1699, 1499; $\delta_{\rm H}$ (CDCl₃) 1.33 (9H, s, Bu'), 1.51 (6H, s, Me₂C<), 1.91 (3H, s, CH=CCH₃), 3.61 (2H, br s, NCH₂CH₂N), 3.96 (2H, br s, NCH₂CH₂N), 3.99 (2H, d, *J* 4.5, CH₂CON), 5.09 (2H, s, PhCH₂), 5.61 (1H, br s, NH), 5.73 (1H, br s, NH), 7.31 (5H, m, ArH), 7.34 (1H, br s, >N-CH=CMe), 8.99 (1H, br s, CONHCO); *m*/z (EI) 502 (M⁺ + 1), 501 (M⁺); HRMS Found: M⁺, 501.2575. C₂₅H₃₅N₅O₉ requires *M*, 501.2587.

ar-Pentafluorobenzylamine 9c²⁷

To a stirred solution of **21** (100 mg, 0.518 mmol) in anhydrous THF (8 ml) was added BH₃·THF (1 M; 2.5 ml, 2.50 mmol) carefully. The resultant solution was stirred and heated to reflux for 10 h. After the mixture had cooled, 2.6 M HCl (10 ml) was carefully added and heating was continued at reflux for 30 min. The resultant solution was evaporated *in vacuo*. The residue obtained was dissolved in 2.6 M HCl (10 ml) and extracted with diethyl ether (20 ml). The aqueous portion was made alkaline with 1 M aq. NaOH up to pH 10–11 and was again extracted with diethyl ether (100 ml); this extract was washed with brine, dried over Na₂SO₄, and concentrated to give **9c** (105 mg, 98%) as a yellow oil; v_{max} (neat)/cm⁻¹ 3395, 2965, 1504, 1171, 1119,

991; $\delta_{\rm H}$ (CDCl₃) 3.96 (2H, br s, ArCH₂); $\delta_{\rm F}$ (CDCl₃) -145.9 (dd, J 9.1, 22.1), -156.6 (t, J 20.8), -162.5 (td, J 8.4, 22.1); m/z (EI) 197 (M⁺), 196 (M⁺ - 1); HRMS Found: M⁺, 197.0256. C₇H₄F₅N requires M, 197.0264.

Preparation of 2,4-difluoro-5-methylbenzylamine 9d

2,4-Difluoro-5-methylbenzonitrile 22. To a well-stirred solution of 12 (900 mg, 4.34 mmol) in dry DMF (40 ml) was added copper(I) cyanide (487 mg, 5.43 mmol) in one portion and the mixture was heated at 160 °C for 3 h. Then the reaction mixture was cooled and poured into water (20 ml), whereupon 20% ag. FeCl_a (9 ml) was added. The mixture was extracted with diethyl ether (100 ml \times 2) and the extract was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel (1-2% ethyl acetate-hexane) to afford 22 (335 mg, 50%) as a white solid; mp 55-56 °C (from ethyl acetate-hexane) (Found: C, 62.80; N, 8.96; H, 3.11. Calc. for C₈H₅F₂N: C, 62.75; N, 9.15; H, 3.29%); v_{max} (KBr)/cm⁻ 3054, 2939, 2232, 1603, 1535, 1089, 1004, 903; $\delta_{\rm H}$ (CDCl₃) 2.28 (3H, s, ArCH₃), 6.92 (1H, t, J 9.1, ArH), 7.47 (1H, J 7.5, ArH); $\delta_{\rm E}$ (CDCl₃) -101.7 (g, J 8.8), -106.7 (g, J 8.8); m/z (EI) 153 (M⁺), 126 (M⁺ - HCN); HRMS Found: M⁺, 153.0365. $C_8H_5F_2N$ requires M, 153.039.

2,4-Difluoro-5-methylbenzylamine 9d. Compound **22** (100 mg, 0.613 mmol) was converted to the corresponding oily amine **9d** (65.0 mg, 67%) by a single-step reduction with BH₃·THF (1 M; 2.5 ml, 2.50 mmol) in dry THF (8 ml) by a procedure similar to the preparation of **9c**; v_{max} (neat)/cm⁻¹ 3378, 3293, 3081, 2932, 1613, 1503, 1087, 889; $\delta_{\rm H}$ (CDCl₃) 2.17 (3H, s, ArCH₃), 3.78 (2H, br s, ArCH₂), 6.68 (1H, t, J 9.8, ArH), 7.06 (1H, t, J 8.5, ArH); $\delta_{\rm F}$ (CDCl₃) –111.7 (br quintet, J 7.5), –115.2 (br q, J 8.7); *m*/*z* (EI) 157 (M⁺), 156 (M⁺ – 1); HRMS Found: M⁺, 157.0698. C₈H₉F₂N requires *M*, 157.0703.

Preparation of dipeptides 4

N-(Benzyloxycarbonyl-B-alanyl)-N-(4-fluorobenzyl)-2-methylalanine (N-tert-butyl)amide 4a [Z-BAla-Aib(N-4-fluorobenzyl)-NBu']. Condensation of 9a (200 mg, 1.65 mmol), acetone (191 mg, 3.30 mmol)), 10a (736 mg, 3.30 mmol) and 8a (274 mg, 3.30 mmol) yielded 4a (460 mg, 59%) as a white solid; mp 74-75 °C (from ethyl acetate-hexane) (Found: C, 65.74; N, 8.64; H, 7.31. Calc. for C₂₆H₃₄FN₃O₄: C, 66.22; N, 8.91; H, 7.27%); v_{max} (neat)/cm⁻¹ 3433, 3341, 1712, 1664, 1511; δ_{H} (CDCl₃) 1.32 (9H, s, Bu'), 1.37 (6H, s, Me₂C<), 2.51 (2H, br t, J 5.5, CH2CH2N), 3.47 (2H, br q, J 5.5, CH2CH2N), 4.53 (2H, s, ArCH₂N), 5.08 (2H, s, PhCH₂), 5.44 (1H, br s, NH), 5.58 (1H, br s, NH), 7.03 (2H, t, J 8.6, ArH), 7.34 (7H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -115.5 (m); $\delta_{\rm C}$ (68 MHz; CDCl₃) 24.58 [C(CH₃)₂], 28.73 [C(CH₃)₃], 34.73 (CH₂), 37.22 (CH₂), 46.82 (CH₂), 51.16 $[C(CH_3)_3]$, 63.18 $[C(CH_3)_2]$, 66.63 (CH_2) , 115.90 (d, ² $J_{C,F}$ 21.8 F-Ar-CH), 127.61 (d, ³J_{C,F} 8.1, F-Ar-CH), 127.94, 128.43 (each s, 5 × Ar–CH), 133.89 (d, ${}^{4}J_{C,F}$ 3.2, F–Ar–C), 136.68 (Ar–C, *ipso*), 156.38 (C=O), 162.01 (d, ${}^{1}J_{C,F}$ 245.0, Ar–C–F), 172.61 (C=O), 173.72 (C=O); *m*/*z* (EI) 471 (M⁺); HRMS Found: M⁺, 471.2543. C₂₆H₃₄FN₃O₄ requires *M*, 471.2533.

N-(Benzyloxycarbonyl-β-alanyl)-*N*-(2,4-diff uorobenzyl)-2methylalanine (*N*-tert-butyl)amide 4b [Z-βAla-Aib(*N*-2,4difluorobenzyl)-NBu']. Condensation of 9b (200 mg, 1.39 mmol), acetone (161 mg, 2.78 mmol), 10a (620 mg, 2.78 mmol) and 8a (231 mg, 2.78 mmol) gave 4b (450 mg, 66%) as a white solid; mp 73–74 °C (from ethyl acetate–hexane) (Found: C, 63.58; N, 8.56; H, 6.88. Calc. for C₂₆H₃₃F₂N₃O₄: C, 63.29; N, 8.58; H, 6.79%); v_{max} (neat)/cm⁻¹ 3435, 3339, 1714, 1659, 1509; $\delta_{\rm H}$ (CDCl₃) 1.34 (9H, s, Bu'), 1.37 (6H, s, Me₂C<), 2.48 (2H, br t, *J* 5.5, CH₂CH₂N), 3.47 (2H, br q, *J* 5.5, CH₂CH₂N), 4.54 (2H, br s, ArCH₂N), 5.08 (2H, s, PhCH₂), 5.44 (1H, br s, NH), 5.53 (1H, br s, NH), 6.83 (2H, m, ArH), 7.34 (5H, m, ArH), 7.71 (1H, m, ArH); $\delta_{\rm F}$ (CDCl₃) –111.7 (quintet, J 7.6), –115.2 (q, J 8.7); $\delta_{\rm C}$ (68 MHz; CDCl₃) 24.14 [C(CH₃)₂], 28.55 [C(CH₃)₃], 34.40 (CH₂), 37.01 (CH₂), 41.04 (CH₂), 51.02 [C(CH₃)₃], 62.86 [C(CH₃)₂], 66.45 (CH₂), 103.91 (t, ²J_{C,F} 25.5, F–Ar–CH), 111.88 (dd, ²J_{C,F} 21.2, ⁴J_{C,F} 3.5, F–Ar–CH), 121.23 (dd, ²J_{C,F} 14.0, ⁴J_{C,F} 3.5, F–Ar–C), 127.94, 127.98, 128.45 (each s, 5 × Ar–CH), 129.19 (dd, ³J_{C,F} 9.5, ³J_{C,F} 5.6, F–Ar–CH), 136.69 (Ar–C, *ipso*), 156.37 (C=O), 159.55 (dd, ¹J_{C,F} 248.0, ³J_{C,F} 11.7, Ar–C–F), 162.23 (dd, ¹J_{C,F} 248, ³J_{C,F} 11.7, Ar–C–F), 172.69 (C=O), 173.64 (C=O); *m*/z (EI) 489 (M⁺); HRMS Found; M⁺, 489.2457. C₂₆H₃₃F₂N₃O₄ requires *M*, 489.2475.

N-(Benzyloxycarbonyl-β-alanyl)-N-(2,4-difluorobenzyl)-2methylalanylglycine ethyl ester 4c [Z-BAla-Aib(N-2,4-difluorobenzyl)-Gly-OEt]. Condensation of 9b (200 mg, 1.39 mmol), acetone (161 mg, 2.78 mmol), 10a (523 mg, 2.78 mmol) and 8b (314 mg, 2.78 mmol) gave 4c (320 mg, 44%) as a white solid; mp 89-90 °C (from ethyl acetate-hexane) (Found: C, 59.91; N, 7.87; H, 5.90. Calc. for C₂₆H₃₁F₂N₃O₆: C, 60.11; N, 8.09; H, 6.01%); v_{max} (neat)/cm⁻¹ 3353, 2986, 1712, 1661, 1509; $\delta_{\rm H}$ (CDCl₃) 1.26 (3H, t, J 6.9, OCH₂CH₃), 1.44 (6H, s, Me₂C<), 2.51 (2H, br t, J 5.4, CH₂CH₂N), 3.47 (2H, br q, J 5.4, CH₂CH₂N), 4.04 (2H, d, J 5.1, NHCH₂CO), 4.19 (2H, q, J 6.9, OCH₂CH₃), 4.56 (2H, s, ArCH₂N), 5.07 (2H, s, PhCH₂), 5.61 (1H, br s, NH), 6.21 (1H, br s, NH), 6.85 (2H, m, ArH), 7.31 (5H, m, ArH), 7.75 (1H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -111.6 (br quintet, J 7.3), -115.1 (br q, J 9.1); m/z (EI) 519 (M⁺); HRMS Found: M^+ , 519.2160. $C_{26}H_{31}F_2N_3O_6$ requires M, 519.2181.

N-(*tert*-Butoxycarbony-β-alanyl)-*N*-(2,4-difluorobenzyl)-2methylalanine (*N*-cyclohex-1-enyl)amide 4d [Boc-βAla-Aib(*N*-2,4-difluorobenzyl)-N(cyclohex-1-enyl)]. Condensation of 9b (200 mg, 1.39 mmol), acetone (162 mg, 2.79 mmol), 10b (624 mg, 2.79 mmol) and 8c (299 mg, 2.79 mmol) gave 4d (290 mg, 43%) as a colourless oil; v_{max} (neat)/cm⁻¹ 3448, 3187, 1692, 1656, 1504, 853; $\delta_{\rm H}$ (CDCl₃) 1.42 (9H, s, Bu'), 1.44 (6H, s, Me₂C<), 1.68 (4H, m, CH₂ × 2), 2.13 (4H, m, CH₂ × 2), 2.47 (2H, br t, *J* 5.5, CH₂CH₂N), 3.38 (2H, br q, *J* 5.5, CH₂CH₂N), 4.57 (2H, s, ArCH₂N), 5.22 (1H, br s, NH), 6.05 (1H, br s, CH=C<), 6.54 (1H, br s, NH), 6.84 (2H, m, ArH), 7.81 (1H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -111.7 (m), -115.2 (m); *m*/z (EI) 479 (M⁺), 422 (M⁺ - Bu¹); HRMS Found: M⁺, 479.2539. C₂₅H₃₅N₃F₂O₄ requires *M*, 479.2563.

N-(Benzyloxycarbonyl-β-alanyl)-N-(pentafluorobenzyl)-2methylalanine (N-tert-butyl)amide 4e [Z-BAla-Aib(N-pentafluorobenzyl)-NBu']. Condensation of 9c (200 mg, 1.01 mmol), acetone (117 mg, 2.02 mmol), 10a (451 mg, 2.02 mmol) and 8a (168 mg, 2.02 mmol) gave 4e (240 mg, 43%) as a white, solid mixture of rotamers; mp 86-87 °C (from ethyl acetate-hexane) (Found: C, 57.24; N, 7.59; H, 5.56. Calc. for C₂₄H₃₀F₅N₃O₄: C, 57.45; N, 7.73; H, 5.56%); v_{max} (neat)/cm⁻¹ 3437, 3346, 1714, 1660, 1508; δ_H (CDCl₃) 1.27 (9H, s, Bu^t), 1.36 (6H, s, Me₂C<), 2.68 (2H, br t, J 5.5, CH₂CH₂N), 3.52 (2H, br q, J 5.5, CH₂CH₂N), 4.54, 4.73 (total 2H, each br s, ArCH₂N), 5.09 (2H, s, PhCH₂), 5.43, 5.47 (total 1H, each br s, NH), 5.55 (1H, br s, NH), 7.33 (5H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -143.3 (dd, J 7.8, 22.0), -155.7 (t, J 20.1), -161.7 (td, J 9.9, 22.1); δ_{c} (68 MHz; CDCl₃) 24.05, 24.11 [each s, C(CH₃)₂], 28.39, 28.54 [each s, C(CH₃)₃], 34.31, 34.98 (each s, CH2), 37.05, 37.07 (each s, CH2), 37.92, 40.53 (each s, CH₂), 50.91, 51.20 [each s, C(CH₃)₃], 62.74, 63.56 [each s, C(CH₃)₂], 66.54 (CH₂), 111.9 (m, Ar-C-F), 127.94, 127.98, 128.42 (each s, 5 × Ar-CH), 136.58 (Ar-C, ipso), 137.88 (dm, ¹J_{C,F} 253.0, Ar–C–F), 140.28 (dm, ¹J_{C,F} 252.0, Ar–C–F), 145.09 (dm, ¹J_{C,F} 253.0, F–Ar–C), 156.46 (C=O), 172.97 (C=O), 173.38 (C=O); *m*/*z* (EI) 543 (M⁺), 542 (M⁺ - 1); HRMS Found; M⁺, 543.2198. C₂₄H₃₀F₅N₃O₄ requires *M*, 543.2239.

N-(Benzyloxycarbonyl-β-alanyl)-N-(2,4-difluoro-5-methylbenzyl)-2-methylalanine (N-tert-butyl)amide 4f [Z-BAla-Aib-(N-2,4-difluoro-5-methylbenzyl)-NBu']. Condensation of 9d (200 mg, 1.27 mmol), acetone (147 mg, 2.54 mmol), 10a (567 mg, 2.54 mmol) and 8a (211 mg, 2.54 mmol) gave 4f (265 mg, 43%) as a white solid; mp 120-121 °C (from ethyl acetate-hexane); v_{max} (neat)/cm⁻¹ 3433, 3327, 1713, 1663, 1510; $\delta_{\rm H}$ (CDCl₃) 1.32 (9H, s, Bu'), 1.37 (6H, s, Me₂C<), 2.22 (3H, s, ArCH₃), 2.56 (2H, br t, J 5.6, CH₂CH₂N), 3.48 (2H, br q, J 5.6, CH₂CH₂N), 4.53 (2H, s, ArCH₂N), 5.08 (2H, s, PhCH₂), 5.43 (1H, br s, NH), 5.57 (1H, br s, NH), 6.76 (1H, t, J 9.7, ArH), 7.32 (6H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -114.6 (m), -119.4 (m); *m*/*z* (EI) 503 (M⁺); HRMS Found: M⁺, 503.2596. $C_{26}H_{35}F_2N_3O_4$ requires *M*, 503.2596.

N-(tert-Butoxycarbonyl-β-alanyl)-N-(4-fluorobenzyl)-glycine *N-tert*-butylamide 5a [Boc-βAla-Gly(*N*-4-fluorobenzyl)-NBu']. Condensation of 9a (200 mg, 1.59 mmol), paraformaldehyde (572 mg, 3.18 mmol), 10b (601 mg, 3.18 mmol) and 8a (264 mg, 3.18 mmol) yielded 5a (299 mg, 45%) as a white solid mixture of rotamers; mp 103-104 °C (Found C, 61.52; N 10.25; H, 7.83. Calc. for $C_{21}H_{32}FN_3O_4$: C, 61.59; N, 10.26; H, 7.88%); v_{max} (neat)/cm⁻¹ 3451, 3333, 3006, 2977, 1695, 1510, 757; $\delta_{\rm H}$ (CDCl₃) 1.23, 1.31 (total 9H, each s, Bu'N), 1.39, 1.42 (total 9H, each s, Bu'O), 2.52, 2.64 (total 2H, each br t, J 5.4, NCH₂CH₂CO), 3.44 (2H, br q, J 5.9, NHCH₂CH₂), 3.78, 3.84 (total 2H, each s, NCH₂CO), 4.59 (2H, s, ArCH₂), 5.21, 5.33 (total 1H, each br s, NH), 5.92 (1H, br s, NH), 7.03 (2H, m, ArH), 7.14 (2H, m, ArH); $\delta_{\rm F}$ (CDCl₃) -114.5 (m); $\delta_{\rm C}$ (125.76 MHz; CDCl₃) 28.52, 28.54 [each s, NC(CH₃)₃], 28.66, 28.81 [each s, OC(CH₃)₃], 33.44, 33.86 (each s, CH₂), 36.52, 49.97 (each s, CH₂), 50.89, 51.56 (each s, CH₂), 51.45, 51.80 [each s, NC(CH₃)₃], 51.86 (CH₂), 79.40 [OC(CH₃)₃], 115.87 (m, F–Ar–CH), 128.68, 130.47 (each d, ${}^{3}J_{C,F}$ 8.3, F–Ar–CH), 131.50, 131.70 (each d, ${}^{4}J_{C,F}$ 4.4, F–Ar–C), 156.11 (C=O), 163.52 (d, ${}^{1}J_{C,F}$ 245.0, Ar–C–F), 166.77, 167.89 (each s, C=O), 172.71, 172.94 (each s, C=O); m/z (EI) 410 (M⁺ + 1), 409 (M⁺), 353 $[(M^+ + 1) - Bu^t]$; HRMS Found: M⁺, 409.2383. C₂₁H₃₂FN₃O₄ requires M, 409.2377.

N-(tert-Butoxycarbonyl-β-alanyl)-N-(2,4-difluoro-5-methylbenzyl)-glycine (N-cyclohex-1-enyl)amide 5b [Boc-BAla-Gly(N-2,4-difluoro-5-methylbenzyl)-N-(cyclohex-1-enyl)]. Condensation of 9d (200 mg, 1.27 mmol), paraformaldehyde (457 mg, 2.54 mmol), 10b (513 mg, 2.54 mmol), and 8c (211 mg, 2.54 mmol) gave **5b** (240 mg, 45%) as a yellow oily mixture of rotamers; v_{max} (neat)/cm⁻¹ 3453, 3333, 3007, 1706, 1615, 1507, $891; \delta_{\rm H}$ (CDCl₃) 1.43 (9H, s, Bu^tO), 1.57–2.09 (8H, m, CH₂ × 4), 2.23 (3H, s, ArCH₃), 2.43, 2.52 (total 2H, br s and t, J 6.0, NCH₂CH₂CO), 3.38 (2H, m, NHCH₂CH₂), 3.73 (2H, s, NCH₂CO), 4.26 (2H, s, ArCH₂), 5.02 (2H, br), 5.39 (1H, br s), 6.76 (1H, t,J 9.5, ArH), 7.19 (1H, t, J 8.3, ArH); δ_F (CDCl₃) -114.4 (q, J 7.4), -119 (q, J 8.3); m/z (EI) 465 (M⁺); HRMS Found: M⁺, 465.2427. C₂₄H₃₃F₂N₃O₄ requires *M*, 465.2507.

N-β-Alanyl-N-(2,4-difluorobenzyl)-2-methylalanine 4g [βAla-Aib(N-2,4-difluorobenzyl)]. Compound 4g (12.0 mg, 96%) was prepared from 4d (20 mg, 0.04 mmol), THF (2 ml) and 3 M HCl (1 ml), according to the procedure analogous to the prepration of **2h**, as a yellow oily mixture of rotamers; $\delta_{\rm H}$ (D₂O) 1.29, 1.44 (total 6H, each s, Me₂C<), 2.56, 2.73 (total 2H, each br t, J 5.9, CH₂CH₂N), 3.08 (2H, br t, J 5.9, CH₂CH₂N), 6.93 (2H, m, ArH), 7.47 (1H, m, ArH); other peaks may be hidden beneath the D₂O signal; $\delta_{\rm F}$ (D₂O) -122.2 (m), -124.6 (m); m/z (EI) 300.13 (M⁺).

N-β-Alanyl-N-(2,4-difluoro-5-methylbenzyl)glycine 5c [βAla-Gly(N-2,4-difluoro-5-methylbenzyl)]. To a solution of 5b (25.0 mg, 0.05 mmol) in THF (4 ml) was added 3 M HCl (3 ml) and the mixture was stirred overnight at room temperature.

A similar work-up as that for 4g gave 5c (14.0 mg, 92%) as a yellow oily mixture of rotamers; $\delta_{\rm H}$ (D₂O) 2.10, 2.13 (total 3H, each s, ArCH₃), 2.66 (2H, br t, J 6.1, NHCH₂CH₂), 3.14 (2H, br t, J 6.1, CH₂CH₂CO), 3.89, 4.46 (total 2H, each s, >NCH₂CO), 6.92 (1H, t, J 9.7, ArH), 7.32 (1H, t, J 8.2, ArH), other peaks may be hidden beneath the D₂O signal; δ_F (D₂O) -113.8 (q, J 8.3), -120.9 (q, J 9.2); m/z (EI) 286 (M⁺), 284 (M⁺ - 2); HRMS Found: $(M^+ - 2)$, 284.0596. $C_{13}H_{14}F_2N_2O_3$ requires m/z, 284.0596.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 10771242) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. N. S. wishes to thank the Kato Memorial Bioscience Foundation for support.

References

- 1 (a) B. A. Schweitzer and E. T. Kool, J. Org. Chem., 1994, 59, 7238; (b) B. A. Schweitzer and E. T. Kool, J. Am. Chem. Soc., 1995, 117, 1863; (c) S. Moran, R. X.-F. Ren, S. Rumney IV and E. T. Kool, J. Am. Chem. Soc., 1997, **119**, 2056; (d) K. M. Guckian and T. Kool, Angew. Chem., Int. Ed. Engl., 1997, 36, 2825; E (e) T. J. Mattray and E. T. Kool, J. Am. Chem. Soc., 1998, 120, 6191.
- 2 (a) Y. Takeuchi, M. Kamezaki, K. Kirihara, G. Haufe, K. W. Laue and N. Shibata, Chem. Pharm. Bull., 1998, 46, 1062; (b) W. K. Laue, M. U. Triller, Y. Takeuchi and N. Shibata, Tetrahedron, 1998, 54, 5929; (c) Y. Takeuchi, K. Kirihara, K. L. Kirk and N. Shibata, Chem. Commun., 2000, 785; (d) N. Shibata, B. K. Das, H. Honjo and Y. Takeuchi, J. Chem. Soc., Perkin Trans. 1, 2001, 1605.
- 3 (a) J. H. Williams, J. K. Cockcroft and A. N. Fitch, Angew. Chem., Int. Ed. Engl., 1992, 31, 1655; (b) G. W. Coates, A. R. Dunn, L. M. Henling, E. B. L. Ziller and R. H. Grubs, J. Am. Chem. Soc., 1998, 120, 3641.
- 4 For example (a) J. T. Welch, *Tetrahedron*, 1987, 43, 3123; (b)
 P. D. Bailey, A. N. Boa, G. A. Crofts, M. van Diepen, M. Helliwell, R. E. Gammon and M. J. Harrison, Tetrahedron Lett., 1989, 30, 7457; (c) P. D. Bailey, S. R. Baker, A. N. Boe, J. Clayson and G. M. Rosair, Tetrahedron Lett., 1998, 39, 7755 and references therein.
- 5 V. P. Kukhar and V. A. Soloshonok, Fluorine-containing Amino Acids, Wiley, Chichester, 1995. 6 N. Shibata, B. K. Das and Y. Takeuchi, J. Chem. Soc., Perkin Trans.
- 1, 2000, 4234.
- 7 (a) R. O. Duthaler, Tetrahedron, 1994, 50, 1539; (b) R. M. Adlington, J. E. Baldwin, D. Catterick and G. J. Pritchard, J. Chem. Soc., Perkin Trans. 1, 1999, 855; (c) R. M. Adlington, J. E. Baldwin, D. Catterick, G. J. Pritchard and L. T. Tang, J. Chem. Soc., Perkin Trans. 1, 2000, 303.
- 8 (a) D. D. Weller and D. T. Daly, J. Org. Chem., 1991, 56, 6000; (b) A. Lenzi, G. Reginato and M. Taddei, Tetrahedron Lett., 1995, 36, 1713; (c) N. M. Howarth and L. P. G. Wakelin, J. Org. Chem., 1997, 62, 5441; (d) U. Diederichsen and H. W. Schmitt, Angew. Chem., Int. Ed., 1998, **37**, 302; (e) U. Diederichsen and D. Weicherding, Synlett, 1999, 917; (f) R. C. F. Jones, D. J. C. Berthelet and J. N. Iley, *Tetrahedron*, 2001, **57**, 6539.
- 9 (a) P. E. Nielsen and G. Haaima, Chem. Soc. Rev., 1997, 73; (b) E. Uhlmann, A. Peyman, G. Breipohl and W. D. Will, Angew. Chem., Int. Ed., 1998, 37, 2796; (c) P. E. Nielsen, M. Egholm, R. H. Berg and O. Buchardt, Science, 1991, 254, 1497.
- 10 (a) Y. Wu and J. C. Xu, Chin. Chem. Lett., 2000, 11, 771; (b) Y. Wu, J. C. Xu, J. Liu and Y. X. Jin, Tetrahedron, 2001, 57, 3373.
- 11 S. C. Bergmeier and S. L. Fundy, Bioorg. Med. Chem. Lett., 1997, 7 3135
- 12 For example: (a) M. Egholm, O. Buchardt, P. E. Nielsen and R. H. Berg, J. Am. Chem. Soc., 1992, 114, 1895; (b) B. Hyrup, M. Egholm, P. E. Nielsen, P. Wittung, B. Norden and O. Buchardt, J. Am. Chem. Soc., 1994, 116, 7964; (c) M. Fujii, K. Yoshida, J. Hidaka and T. Ohtsu, Chem. Commun., 1998, 717; (d) C. Dallaire and P. Arya, Tetrahedron Lett., 1998, 39, 5129 and references therein
- 13 I. Ugi, Angew. Chem., Int. Ed. Engl., 1982, 21, 810.
- 14 (a) C. F. Hoyng and A. D. Patel, Tetrahedron Lett., 1980, 21, 4795; (b) J. Rachon, Synthesis, 1984, 219; (c) T. Yamada, T. Yanagi, Y. Omote, T. Miyazawa, S. Kuwata, M. Sugiura and K. Matsumoto, Chem. Soc., Chem. Commun., 1990, 1640; (d) A. Demharter, W. Horl, E. Herdtweck and I. Ugi, Angew. Chem., Int. Ed. Engl.,

1996, **35**, 173; (e) C. D. Floyd, L. A. Harnett, A. Miller, S. Patel, L. Saroglou and M. Whittaker, *Synlett*, 1998, 637; (f) T. Yamada, Y. Omote, Y. Yamanaka, T. Miyazawa and S. Kuwata, *Synthesis*, 1998, 991; (g) B. M. Ebert and I. Ugi, *Tetrahedron*, 1998, **54**, 11887; (h) W. Maison, I. Schlemminger, O. Westerhoff and J. Martens, *Bioorg. Med. Chem. Lett.*, 1999, **9**, 581.

- 15 T. Freidj and T. Klinstedt, Synthesis, 1987, 40.
- 16 J. Knight and P. J. Parsons, J. Chem. Soc., Perkin Trans 1., 1989, 979.
- 17 C. Chen, Y. Fu and T. Tang, J. Nat. Prod., 1995, 58, 1559.
- 18 T. A. Keating and R. W. Armstrong, J. Am. Chem. Soc., 1999, 121, 2474.
- 19 (a) J. R. Spencer, N. G. J. Delaet, A. Toy-Palmer, V. V. Antonenko and M. Goodman, *J. Org. Chem.*, 1993, **58**, 1635; (b) C. J. Creighton, T. T. Romoff, H. Bu Jane and M. Goodman, *J. Am. Chem. Soc.*, 1999, **121**, 6786.
- 20 W. A. Summers, J. Y. Lee and J. G. Burr, J. Org. Chem., 1975, 40, 1559.
- 21 (a) C. J. Rizzo, J. P. Dougherty and R. C. Breslow, *Tetrahedron Lett.*, 1992, 33, 4129; (b) J. P. Dougherty, C. J. Rizzo and R. C. Breslow, *J. Am. Chem. Soc.*, 1992, 114, 6254; (c) R. Jin, W. H. Chapman, A. R. Srinivasan, W. K. Olson, R. C. Breslow and K. Breslauer, *Proc. Natl. Acad. Sci. USA*, 1993, 90, 10568; (d) T. L. Sheppard, A. T. Rosenblatt and R. C. Breslow, *J. Org. Chem.*, 1994, 59, 7243; (e) T. L. Sheppard and R. C. Breslow, *J. Am. Chem. Soc.*, 1996, 118, 9810.
- 22 J. Qiu, S. H. Stevenson, M. J. O'Beirne and R. B. Silverman, J. Med. Chem., 1999, 42, 329.
- 23 L. J. Belf, M. W. Buxton and G. Fuller, J. Chem. Soc., 1965, 3372.
- 24 C. M. Suter and A. W. Weston, J. Am. Chem. Soc., 1941, 63, 602.
- 25 E. Steiner, H. Beyeler and R. Huesler, *Eur. Pat. Appl. EP 401 166*, (Ciba-Geigy A.-G., Switzerland), 1990; E. Steiner, H. Beyeler and R. Huesler, *Chem. Abstr.*, 1991, **115**, 136397k.
- 26 R. Filler, W. Chen and S. M. Woods, J. Fluorine Chem., 1995, 73, 95.
- 27 R. B. Silverman and W. P. Hawe, J. Enzyme Inhib., 1995, 9, 203.